Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.350
Filtrar
1.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607072

RESUMO

The field cancerization theory is an important paradigm in head and neck carcinoma as its oncological repercussions affect treatment outcomes in diverse ways. The aim of this study is to assess the possible interconnection between peritumor mucosa and the process of tumor neoangiogenesis. Sixty patients with advanced laryngeal carcinoma were enrolled in this study. The majority of patients express a canonical HIF-upregulated proangiogenic signature with almost complete predominancy of HIF-1α overexpression and normal expression levels of the HIF-2α isoform. Remarkably, more than 60% of the whole cohort also exhibited an HIF-upregulated proangiogenic signature in the peritumoral benign mucosa. Additionally, the latter subgroup had a distinctly shifted phenotype towards HIF-2α upregulation compared to the one in tumor tissue, i.e., a tendency towards an HIF switch is observed in contrast to the dominated by HIF-1α tumor phenotype. ETS-1 displays stable and identical significant overexpression in both the proangiogenic phenotypes present in tumor and peritumoral mucosa. In the current study, we report for the first time the existence of an abnormal proangiogenic expression profile present in the peritumoral mucosa in advanced laryngeal carcinoma when compared to paired distant laryngeal mucosa. Moreover, we describe a specific phenotype of this proangiogenic signature that is significantly different from the one present in tumor tissue as we delineate both phenotypes, quantitively and qualitatively. This finding is cancer heterogeneity, per se, which extends beyond the "classical" borders of the malignancy, and it is proof of a strong interconnection between field cancerization and one of the classical hallmarks of cancer-the process of tumor neoangiogenesis.


Assuntos
Carcinoma , Neoplasias Laríngeas , Humanos , Neoplasias Laríngeas/genética , Neovascularização Patológica/genética , Mucosa , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38571885

RESUMO

Objectives: This study aimed to assess the cellular localization and expression levels of hypoxia-inducible factor (HIF) -α proteins (specifically HIF-1α, HIF-2α, and HIF-3α) that play a role in the hypoxia pathway and to determine their correlation with clinicopathological parameters and patient survival in renal cell carcinoma (RCC). Materials and methods: Tissue microarray (TMA) with cores from 150 clear cell RCCs and 31 non-ccRCC samples. HIF-1α, HIF-2α, and HIF-3α antibodies were used for immunohistochemistry (IHC) of TMA to evaluate the cellular localization and expression levels of HIF-α proteins, specifically in relation to the hypoxia pathway. Results: The expression levels of the HIF-α proteins were higher in the nucleus than in the cytoplasm. Furthermore, the nuclear expression levels of all HIF-α proteins were significantly higher in clear cell RCC (ccRCC) than in non-ccRCC. Cytoplasmic HIF-3α expression was also higher in ccRCC than in non-ccRCC, whereas cytoplasmic HIF-1α and HIF-2α expression levels were similar between the different RCC types. In ccRCC, nuclear HIF-1α expression levels correlated with both nuclear HIF-2α and HIF-3α levels, whereas cytoplasmic HIF-3α expression levels were associated with HIF-1α only.In non-ccRCC, there was a positive correlation observed between nuclear HIF-1α and HIF-3α expression, but no correlation was found with HIF-2α. In patients with ccRCC, the nuclear expressions of HIF-1α and HIF-3α was significantly associated with cancer-specific survival (CSS) in univariate analysis. This association was no longer evident in multivariate analysis. Notably, there was no correlation observed between nuclear HIF-2α expression and CSS in these patients. In contrast, cytoplasmic expression levels showed no association with CSS. Conclusion: The expression levels of the three primary HIF-α proteins were found to be higher in the nucleus than in the cytoplasm. Furthermore, the results indicated that HIF-3α and HIF-1α expression levels were significant univariate factors associated with CSS in patients with clear cell RCC. These results highlight the critical role that HIF-3α and HIF-1α play in the hypoxia pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imuno-Histoquímica , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
3.
Methods Mol Biol ; 2795: 161-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594537

RESUMO

The PHYTOCHROME INTERACTING FACTORs (PIFs) play pivotal roles in regulating thermo- and photo-morphogenesis in Arabidopsis. One of the main hubs in thermomorphogenesis is PIF4, which regulates plant development under high ambient temperature along with other PIFs. PIF4 enhances its own transcription and PIF4 protein is stabilized under high ambient temperature. However, the mechanisms of thermo-stabilization of PIF4 are less understood. Recently, it was shown that SUPPRESSOR OF PHYA-105 1 (SPA1) can function as a serine/threonine kinase to phosphorylate PIF4 in vitro, and the phosphorylated form of PIF4 is more stable under high ambient temperature conditions. In this chapter, we describe the in vitro kinase assay of PIF4 by SPA1. In principle, this protocol can be applied for other putative substrates and kinases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Arabidopsis/metabolismo , Fitocromo/metabolismo , Desenvolvimento Vegetal , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Ciclo Celular/metabolismo
4.
Methods Mol Biol ; 2795: 195-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594540

RESUMO

The phytochrome-interacting factor 4 (PIF4) is a well-known transcription factor that plays a pivotal role in plant thermomorphogenesis, coordinating growth and development in response to temperature changes. As PIF4 functions by forming complexes with other proteins, determining its interacting partners is essential for understanding its diverse roles in plant thermal responses. The GST (glutathione-S-transferase) pull-down assay is a widely used biochemical technique that enables the investigation of protein-protein interactions in vitro. It is particularly useful for studying transient or weak interactions between proteins. In this chapter, we describe the GST pull-down approach to detect the interaction between PIF4 and a known or suspected interacting protein. We provide detailed step-by-step descriptions of the assay procedures, from the preparation of recombinant GST-PIF4 fusion protein to the binding and elution of interacting partners. Additionally, we provide guidelines for data interpretation, quantification, and statistical analysis to ensure robust and reliable results.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Methods Mol Biol ; 2795: 183-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594539

RESUMO

Phytochromes are red (R) and far-red (FR) light photoreceptors in plants. Upon light exposure, photoactivated phytochromes translocate into the nucleus, where they interact with their partner proteins to transduce light signals. The yeast two-hybrid (Y2H) system is a powerful technique for rapidly identifying and verifying protein-protein interactions, and PHYTOCHROME-INTERACTING FACTOR3 (PIF3), the founding member of the PIF proteins, was initially identified in a Y2H screen for phytochrome B (phyB)-interacting proteins. Recently, we developed a yeast three-hybrid (Y3H) system by introducing an additional vector into this Y2H system, and thus a new regulator could be co-expressed and its role in modulating the interactions between phytochromes and their signaling partners could be examined. By employing this Y3H system, we recently showed that both MYB30 and CBF1, two negative regulators of seedlings photomorphogenesis, act to inhibit the interactions between phyB and PIF4/PIF5. In this chapter, we will use the CBF1-phyB-PIF4 module as an example and describe the detailed procedure for performing this Y3H assay. It will be intriguing and exciting to explore the potential usage of this Y3H system in future research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fitocromo , Proteínas de Saccharomyces cerevisiae , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transativadores/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
PLoS One ; 19(4): e0295732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626041

RESUMO

Iron (Fe) is a crucial micronutrient needed in many metabolic processes. To balance needs and potential toxicity, plants control the amount of Fe they take up and allocate to leaves and seeds during their development. One important regulator of this process is POPEYE (PYE). PYE is a Fe deficiency-induced key bHLH transcription factor (TF) for allocation of internal Fe in plants. In the absence of PYE, there is altered Fe translocation and plants develop a leaf chlorosis. NICOTIANAMINE SYNTHASE4 (NAS4), FERRIC-REDUCTION OXIDASE3 (FRO3), and ZINC-INDUCED FACILITATOR1 (ZIF1) genes are expressed at higher level in pye-1 indicating that PYE represses these genes. PYE activity is controlled in a yet unknown manner. Here, we show that a small Fe deficiency-induced protein OLIVIA (OLV) can interact with PYE. OLV has a conserved C-terminal motif, that we named TGIYY. Through deletion mapping, we pinpointed that OLV TGIYY and several regions of PYE can be involved in the protein interaction. An OLV overexpressing (OX) mutant line exhibited an enhanced NAS4 gene expression. This was a mild Fe deficiency response phenotype that was related to PYE function. Leaf rosettes of olv mutants remained smaller than those of wild type, indicating that OLV promotes plant growth. Taken together, our study identified a small protein OLV as a candidate that may connect aspects of Fe homeostasis with regulation of leaf growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Humanos , Ferro/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Mol Biol Rep ; 51(1): 479, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578511

RESUMO

BACKGROUND: GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) genes encode a typical helix-loop-helix (bHLH) transcription factors that primarily regulate trichome branching and root hair development, DNA endoreduplication, trichoblast size, and stomatal formation. The functions of GL3 genes in cotton crop have been poorly characterized. In this study, we performed comprehensive genome-wide scans for GL3 and EGL3 homologs to enhance our comprehension of their potential roles in trichome and fiber development in cotton crop. METHODS AND RESULTS: Our findings paraded that Gossypium hirsutum and G. barbadense have 6 GL3s each, unevenly distributed on 4 chromosomes whereas, G. arboreum, and G. raimondii have 3 GL3s each, unevenly distributed on 2 chromosomes. Gh_A08G2088 and Gb_A09G2187, despite having the same bHLH domain as the other GL3 genes, were excluded due to remarkable short sequences and limited number of motifs, indicating a lack of potential functional activity. The phylogenetic analysis categorized remaining 16 GL3s into three subfamilies (Group I-III) closely related to A. thaliana. The 16 GL3s have complete bHLH domain, encompassing 590-631 amino acids, with molecular weights (MWs) ranging from 65.92 to 71.36 kDa. Within each subfamily GL3s depicted shared similar gene structures and motifs, indicating conserved characteristics within respective groups. Promoter region analysis revealed 27 cis-acting elements, these elements were responsive to salicylic acid, abscisic acid (ABA), methyl jasmonate (MeJA), and gibberellin. The expression of GL3 genes was analyzed across 12 tissues in both G. barbadense and G. hirsutum using the publicly available RNA-seq data. Among GL3s, Gb_D11G0219, Gb_D11G0214, and Gb_D08G2182, were identified as relatively highly expressed across different tissues, consequently selected for hormone treatment and expression validation in G. barbadense. RT-qPCR results demonstrated significant alterations in the expression levels of Gb_D11G0219 and Gb_D11G0214 following MeJA, GA, and ABA treatment. Subcellular localization prediction revealed that most GL3 proteins were predominantly expressed in the nucleus, while a few were localized in the cytoplasm and chloroplasts. CONCLUSIONS: In summary, this study lays the foundation for subsequent functional validation of GL3 genes by identifying hormonal regulation patterns and probable sites of action in cotton trichome formation and fiber development. The results stipulate a rationale to elucidate the roles and regulatory mechanisms of GL3 genes in the intricate process of cotton fibre and trichome development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gossypium/genética , Gossypium/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tricomas/genética , Tricomas/metabolismo , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética
8.
BMC Plant Biol ; 24(1): 205, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509465

RESUMO

BACKGROUND: Gynostemma pentaphyllum, an ancient Chinese herbal medicine, serves as a natural source of gypenosides with significant medicinal properties. Basic helix-loop-helix (bHLH) transcription factors play pivotal roles in numerous biological processes, especially in the regulation of secondary metabolism in plants. However, the characteristics and functions of the bHLH genes in G. pentaphyllum remain unexplored, and their regulatory role in gypenoside biosynthesis remains poorly elucidated. RESULTS: This study identified a total of 111 bHLH members in G. pentaphyllum (GpbHLHs), categorizing them into 26 subgroups based on shared conserved motif compositions and gene structures. Collinearity analysis illustrated that segmental duplications predominately lead to the evolution of GpbHLHs, with most duplicated GpbHLH gene pairs undergoing purifying selection. Among the nine gypenoside-related GpbHLH genes, two GpbHLHs (GpbHLH15 and GpbHLH58) were selected for further investigation based on co-expression analysis and functional prediction. The expression of these two selected GpbHLHs was dramatically induced by methyl jasmonate, and their nuclear localization was confirmed. Furthermore, yeast one-hybrid and dual-luciferase assays demonstrated that GpbHLH15 and GpbHLH58 could bind to the promoters of the gypenoside biosynthesis pathway genes, such as GpFPS1, GpSS1, and GpOSC1, and activate their promoter activity to varying degrees. CONCLUSIONS: In conclusion, our findings provide a detailed analysis of the bHLH family and valuable insights into the potential use of GpbHLHs to enhance the accumulation of gypenosides in G. pentaphyllum.


Assuntos
Gynostemma , Extratos Vegetais , Gynostemma/genética , Gynostemma/química , Gynostemma/metabolismo , Extratos Vegetais/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
9.
Front Endocrinol (Lausanne) ; 15: 1344971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501098

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Colágeno Tipo I/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Células Estreladas do Fígado/metabolismo , Hipóxia/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Sinalização YAP
10.
Mol Biol Rep ; 51(1): 468, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551686

RESUMO

BACKGROUND: Congenital heart disease (CHD) is the most prevalent developmental defect and principal cause of infant mortality and affects cardiac and large blood vessel structures in approximately 1% of live births worldwide. To date, numerous studies have related critical genetic dysfunctions to the pathogenesis of CHDs. However, the genetic basis underlying CHD remains largely unknown. In the present study, we investigated the association of nucleotide variations in coding and noncoding regions of the HAND1 gene with the risk of CHD. The HAND1 gene, encoding a helix-loop-helix transcription factor, is particularly relevant for mechanisms underlying CHD since it plays a significant role in heart development. METHODS AND RESULTS: The genomic DNA of 150 unrelated pediatric patients with CHD was screened by PCR-SSCP and direct sequencing. Four novel and heterozygous missense mutations were identified in the first exon, with three causing amino acid substitutions (p.Val149Met, p.Tyr142His, and p.Leu146Met). In-silico analysis also indicated their deleterious impact on protein structure and function. In addition, we identified five novel nucleotide variants in the 3'UTR region (c.*461, c.*342, c.*529, c.*448, c.*593), potentially altering the target sites of miRNAs. These changes include the loss of certain target sites and the acquisition of new ones. CONCLUSIONS: These findings confirm the phenotypic association between CHDs and HAND1 mutations and can pave the way for developing new preventive and therapeutic strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cardiopatias Congênitas , MicroRNAs , Criança , Humanos , Lactente , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiopatias Congênitas/genética , MicroRNAs/genética , Mutação/genética
11.
New Phytol ; 242(3): 1146-1155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462819

RESUMO

In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches. LHW-T5L1 upregulated the expression of VND1, VND2, VND3, VND6, and VND7 but not that of other VNDs. The expression of VND1-VND3 in the RAM was decreased in lhw. In vnd1 vnd2 vnd3 triple loss-of-function mutant roots, metaxylem differentiation was delayed, and VND6 and VND7 expression was reduced. Furthermore, transcriptome analysis of VND1-overexpressing cells revealed that VND1 upregulates genes involved in the synthesis of secondary cell wall components. These results suggest that LHW-T5L1 upregulates VND1-VND3 at the early stages of vascular development in the RAM, and VNDs promote a predifferentiation state for xylem vessels by triggering low levels of VND6 and VND7 as well as genes for the synthesis of secondary cell wall materials.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Xilema/metabolismo , Regulação da Expressão Gênica de Plantas , Transativadores/metabolismo
12.
Lipids Health Dis ; 23(1): 81, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509584

RESUMO

BACKGROUND: Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRß + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRß + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRß + cells remains undetermined in vivo. METHODS: New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRß + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRß + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRß + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS: Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRß + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRß + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRß + cell Epas1-deficient mice. CONCLUSION: The new findings in this study support that, in contrast to HIF1α, PDGFRß + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.


Assuntos
Tecido Adiposo Branco , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Obesidade , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
13.
Biomed Pharmacother ; 173: 116392, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479183

RESUMO

Gamma-aminobutyric acid (GABA) neuronal system-related transcription factors (TFs) play a critical role in GABA production, and GABA modulates diabetic neuropathic pain (DNP). The present study investigated the therapeutic effects of intrathecal delivery of two TFs achaete-scute homolog 1 (Ascl1) and LIM homeobox protein 6 (Lhx6) in a mouse model of DNP and elucidated their underlying mechanisms. GABA-related specific TFs, including Ascl1, Lhx6, distal-less homeobox 1, distal-less homeobox 5, the Nkx2.1 homeobox gene, and the Nkx2.2 homeobox gene, were investigated under normal and diabetic conditions. Among these, the expression of Ascl1 and Lhx6 was significantly downregulated in mice with diabetes. Therefore, a single intrathecal injection of combined lenti-Ascl1/Lhx6 was performed. Intrathecal delivery of lenti-Ascl1/Lhx6 significantly relieved mechanical allodynia and heat hyperalgesia in mice with DNP. Ascl1/Lhx6 delivery also reduced microglial activation, decreased the levels of pro-inflammatory cytokines including tumor necrosis factor-α and interleukin (IL)-1ß, increased the levels of anti-inflammatory cytokines including IL-4, IL-10, and IL-13, and reduced the activation of p38, c-Jun N-terminal kinase, and NF-κB in the spinal cord of mice with DNP, thereby reducing DNP. The results of this study suggest that intrathecal Ascl1/Lhx6 delivery attenuates DNP via upregulating spinal GABA neuronal function and inducing anti-inflammatory effects.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Microglia/metabolismo , Medula Espinal/metabolismo , Citocinas/metabolismo , Neuropatias Diabéticas/metabolismo , Hiperalgesia/metabolismo , Anti-Inflamatórios/uso terapêutico , Ácido gama-Aminobutírico/metabolismo , Diabetes Mellitus/tratamento farmacológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
14.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426493

RESUMO

Early gestational loss occurs in approximately 20% of all clinically recognized human pregnancies and is an important cause of morbidity. Either embryonic or maternal defects can cause loss, but a functioning and receptive uterine endometrium is crucial for embryo implantation. We report that the switch/sucrose nonfermentable (SWI/SNF) remodeling complex containing polybromo-1 (PBRM1) and Brahma-related gene 1 (BRG1) is essential for implantation of the embryonic blastocyst on the wall of the uterus in mice. Although preimplantation development is unaffected, conditional ablation of Pbrm1 in uterine stromal cells disrupts progesterone pathways and uterine receptivity. Heart and neural crest derivatives expressed 2 (Hand2) encodes a basic helix-loop-helix (bHLH) transcription factor required for embryo implantation. We identify an enhancer of the Hand2 gene in stromal cells that requires PBRM1 for epigenetic histone modifications/coactivator recruitment and looping with the promoter. In Pbrm1cKO mice, perturbation of chromatin assembly at the promoter and enhancer sites compromises Hand2 transcription, adversely affects fibroblast growth factor signaling pathways, prevents normal stromal-epithelial crosstalk, and disrupts embryo implantation. The mutant female mice are infertile and provide insight into potential causes of early pregnancy loss in humans.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Animais , Feminino , Humanos , Camundongos , Gravidez , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/metabolismo , Implantação do Embrião/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Útero
15.
Physiol Rep ; 12(6): e15989, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538007

RESUMO

Cardiac fibroblasts (CFs) are an attractive target for reducing pathological cardiac remodeling, and understanding the underlying mechanisms of these processes is the key to develop successful therapies for treating the pressure-overloaded heart. CF-specific knockout (KO) mouse lines with a Cre recombinase under the control of human TCF21 (hTCF21) promoter and/or an adeno-associated virus serotype 9 (AAV9)-hTCF21 system provide a powerful tool for understanding CF biology in vivo. Although a variety of rat disease models are vital for the research of cardiac fibrosis similar to mouse models, there are few rat models that employ cardiac cell-specific conditional gene modification, which has hindered the development and translational relevance of cardiac disease models. In addition, to date, there are no reports of gene manipulation specifically in rat CFs in vivo. Here, we report a simplified CF-specific rat transgenic model using an AAV9-hTCF21 system that achieved a CF-specific expression of transgene in adult rat hearts. Moreover, we successfully applied this approach to specifically manipulate mitochondrial morphology in quiescent CFs. In summary, this model will allow us to develop fast and simple rat CF-specific transgenic models for studying cardiovascular diseases in vivo.


Assuntos
Cardiomiopatias , Cardiopatias , Camundongos , Animais , Ratos , Humanos , Miócitos Cardíacos/metabolismo , Dependovirus/genética , Cardiopatias/patologia , Camundongos Knockout , Fibroblastos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
16.
Front Immunol ; 15: 1335473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533496

RESUMO

Differentiated embryo-chondrocyte expressed gene 2 (DEC2) is a member of the basic helix-loop-helix (bHLH) subfamily of transcription factors. DEC2 is implicated in tumor immunotherapy, immune system function regulation, and autoimmune diseases. DEC2 enhances Th2 cell differentiation by regulating the IL-2 and IL-4 signaling pathways and mediates the growth of B-1a cells, thereby promoting the occurrence and development of inflammatory responses. In this study, we review the reported roles of DEC2, including the regulation of immune cell differentiation and cytokine production in various cells in humans, and discuss its potential in treating autoimmune diseases and tumors.


Assuntos
Doenças Autoimunes , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Condrócitos/metabolismo , Fatores de Transcrição/metabolismo , Expressão Gênica
17.
Stem Cell Res Ther ; 15(1): 31, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317221

RESUMO

BACKGROUND: Transcription factors HAND1 and HAND2 (HAND1/2) play significant roles in cardiac organogenesis. Abnormal expression and deficiency of HAND1/2 result in severe cardiac defects. However, the function and mechanism of HAND1/2 in regulating human early cardiac lineage commitment and differentiation are still unclear. METHODS: With NKX2.5eGFP H9 human embryonic stem cells (hESCs), we established single and double knockout cell lines for HAND1 and HAND2, respectively, whose cardiomyocyte differentiation efficiency could be monitored by assessing NKX2.5-eGFP+ cells with flow cytometry. The expression of specific markers for heart fields and cardiomyocyte subtypes was examined by quantitative PCR, western blot and immunofluorescence staining. Microelectrode array and whole-cell patch clamp were performed to determine the electrophysiological characteristics of differentiated cardiomyocytes. The transcriptomic changes of HAND knockout cells were revealed by RNA sequencing. The HAND1/2 target genes were identified and validated experimentally by integrating with HAND1/2 chromatin immunoprecipitation sequencing data. RESULTS: Either HAND1 or HAND2 knockout did not affect the cardiomyocyte differentiation kinetics, whereas depletion of HAND1/2 resulted in delayed differentiation onset. HAND1 knockout biased cardiac mesoderm toward second heart field progenitors at the expense of first heart field progenitors, leading to increased expression of atrial and outflow tract cardiomyocyte markers, which was further confirmed by the appearance of atrial-like action potentials. By contrast, HAND2 knockout cardiomyocytes had reduced expression of atrial cardiomyocyte markers and displayed ventricular-like action potentials. HAND1/2-deficient hESCs were more inclined to second heart field lineage and its derived cardiomyocytes with atrial-like action potentials than HAND1 single knockout during differentiation. Further mechanistic investigations suggested TBX5 as one of the downstream targets of HAND1/2, whose overexpression partially restored the abnormal cardiomyocyte differentiation in HAND1/2-deficient hESCs. CONCLUSIONS: HAND1/2 have specific and redundant roles in cardiac lineage commitment and differentiation. These findings not only reveal the essential function of HAND1/2 in cardiac organogenesis, but also provide important information on the pathogenesis of HAND1/2 deficiency-related congenital heart diseases, which could potentially lead to new therapeutic strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Embrionárias Humanas , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo
18.
Plant Sci ; 342: 112028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360401

RESUMO

Iron (Fe) and phosphate (Pi) are two essential nutrients that are poorly available in the soil and should be supplemented either as fertilizers or organic amendments to sustain crop production. Currently, determining how rhizosphere bacteria contribute to plant mineral nutrient acquisition is an area of growing interest regarding its potential application in agriculture. The aim of this study was to investigate the influence of root colonization by Pseudomonas putida for Arabidopsis growth through Fe and Pi nutritional signaling. We found that root colonization by the bacterium inhibits primary root elongation and promotes the formation of lateral roots. These effects could be related to higher expression of two Pi starvation-induced genes and AtPT1, the major Pi transporter in root tips. In addition, P. putida influenced the accumulation of Fe in the root and the expression of different elements of the Fe uptake pathway. The loss of function of the protein ligase BRUTUS (BTS), and the bHLH transcription factors POPEYE (PYE) and IAA-LEUCINE RESISTANT3 (ILR3) compromised the root branching stimulation triggered by bacterial inoculation while the leaf chlorosis in the fit1 and irt1-1 mutant plants grown under standard conditions could be bypassed by P. putida inoculation. The WT and both mutant lines showed similar Fe accumulation in roots. P. putida repressed the expression of the IRON-REGULATED TRANSPORTER 1 (IRT1) gene suggesting that the bacterium promotes an alternative Fe uptake mechanism. These results open the door for the use of P. putida to enhance nutrient uptake and optimize fertilizer usage by plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas putida , Arabidopsis/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fosfatos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Int J Biol Sci ; 20(4): 1471-1491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385084

RESUMO

N6-methyladenosine (m6A) is important in the physiological processes of many species. Methyltransferase-like 16 (METTL16) is a novel discovered m6A methylase, regulating various tumors in an m6A-dependent manner. However, its function in bladder cancer (BLCA) remains largely unclear. In the present study, we found that low expression of METTL16 predicted poor survival in BLCA patients. METTL16 inhibited the proliferation and cisplatin-resistance function of bladder cancer cells in vitro and in vivo. In addition, METTL16 reduced the mRNA stability of prostate transmembrane protein androgen induced-1 (PMEPA1) via binding to its m6A site in the 3'-UTR, thereby inhibited the proliferation of bladder cancer cells and increased the sensitivity of cisplatin through PMEPA1-mediated autophagy pathway. Finally, we found that hypoxia-inducible factor 2α (HIF-2α) exerted its tumor-promoting effect by binding the METTL16 promoter region to repress its transcription. Taken together, High expression of METTL16 predicted better survival in BLCA. METTL16 significantly inhibited bladder cancer cell proliferation and sensitized bladder cancer cells to cisplatin via HIF-2α-METTL16-PMEPA1-autophagy axis in a m6A manner. These findings might provide fresh insights into BLCA therapy.


Assuntos
Adenina/análogos & derivados , Cisplatino , Neoplasias da Bexiga Urinária , Masculino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Proliferação de Células/genética , Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Membrana/metabolismo , Metiltransferases/genética
20.
J Transl Med ; 22(1): 212, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419050

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is known for abnormal lipid metabolism and widespread activation of HIF-2α. Recently, the importance of autophagy in ccRCC has been focused, and it has potential connections with HIF-2α and lipid metabolism. However, the specific regulatory mechanism between HIF-2α, autophagy, and lipid metabolism in ccRCC is still unclear. METHODS: In this study, Bioinformatics Analysis and Sequencing of the whole transcriptome were used to screen our target. The expression of TBC1D5 in renal clear cell carcinoma was confirmed by database analysis, immunohistochemistry, PCR and Western blot. The effects of TBC1D5 on tumor cell growth, migration, invasion and lipid metabolism were examined by CCK8, Transwell and oil red staining, and the mechanism of TBC1D5 on autophagy was investigated by Western blot, fluorescence microscopy and electron microscopy. Chloroquine and rapamycin were used to verified the key role of autophagy in effects of TBC1D5 on tumor cell. The regulatory mechanism of TBC1D5 in renal clear cell carcinoma (RCC) was investigated by shhif-2α, shTBC1D5, mimic, inhibitor, ChIP and Luciferase experiments. The animal model of ccRCC was used to evaluate the biological function of TBC1D5 in vivo. RESULTS: In this study, TBC1D5 was found to be an important bridge between autophagy and HIF-2α. Specifically, TBC1D5 is significantly underexpressed in ccRCC, serving as a tumor suppressor which inhibits tumor progression and lipid accumulation, and is negatively regulated by HIF-2α. Further research has found that TBC1D5 regulates the autophagy pathway to reverse the biological function of HIF-2α in ccRCC. Mechanism studies have shown that HIF-2α regulates TBC1D5 through hsa-miR-7-5p in ccRCC, thereby affecting tumor progression and lipid metabolism through autophagy. CONCLUSIONS: Our research reveals a completely new pathway, HIF-2α/hsa-miR-7-5p/TBC1D5 pathway affects ccRCC progression and lipid metabolism by regulating autophagy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Metabolismo dos Lipídeos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...